Explore why we care about the ATE, ATT, and ATU and figure out how to calculate them with observational data
R
Tidyverse
Visualization
Author
Published

Thursday, March 21, 2024

Modified

Monday, November 11, 2024

Doi

https://rviews.rstudio.com/page/13/

## ── Attaching core tidyverse packages ──────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr     1.1.4     ✔ readr     2.1.5
## ✔ forcats   1.0.0     ✔ stringr   1.5.1
## ✔ ggplot2   3.5.1     ✔ tibble    3.2.1
## ✔ lubridate 1.9.3     ✔ tidyr     1.3.1
## ✔ purrr     1.0.2     
## ── Conflicts ────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Table 1: Standard table showing potential outcomes, individual causal effects, and realized outcomes
Confounder
Treatment
Unobservable
Realized
ID
Age
Treated
Potential outcomes
ICE or \(\delta_i\)*
Outcome
(Z_i) (X_i) (Y^1_i) (Y^0_i) (Y^1_i - Y^0_i) (Y_i)
1 Old 1 80 60 20 80
2 Old 1 75 70 5 75
3 Old 1 85 80 5 85
4 Old 0 70 60 10 60
5 Young 1 75 70 5 75
6 Young 0 80 80 0 80
7 Young 0 90 100 −10 100
8 Young 0 85 80 5 80
* ICE = individual causal effect
Back to top